IMI project - SAFE-T
An European consortium approach to renal safety biomarkers

Stefan Sultana
On behalf of DIKI subgroup
Introduction to SAFE-T

• **Safer And Faster Evidence-based Translation**
• **Innovative Medicines Initiative - Qualification of Translational Safety Biomarkers**
• Partnership of pharmaceutical companies, academic centres, small business enterprises having open dialogue with regulatory authorities
• 5 year project started in June 2009
• 36M € ($44M) research budget
 – Funding from European Commission with in-kind contributions from Pharma
The SAFE-T Project Objectives

• To evaluate utility of safety biomarkers for monitoring organ safety in humans.
• To develop assays and devices for clinical application of safety biomarkers.
• To compile evidence to qualify safety biomarkers for regulatory decision-making in clinical drug development.
• To gain evidence for how safety markers may be used in disease diagnosis and in clinical practice (e.g. intensive care units).
Three areas of focus for safety markers

• **Drug-Induced Kidney Injury**
 – Serum Creatinine + BUN are significantly increased only when 50% of kidney function is lost.

• **Drug-Induced Liver Injury**
 – Transaminases are not specific and or predictive of who will recover vs. develop liver failure.

• **Drug-Induced Vascular Injury**
 – There are currently no clinical biomarkers to monitor vascular injury.

• **Overall objective of SAFE-T programs**
DIKI Biomarker Qualification Strategy

Biomarker step 1 list
- Literature
- Databases
- SAFE-T sources

Select

Biomarker step 2 list
- Evaluation

Select

Biomarker step 3 list
- Regulatory advice
- Assay availability / development
- Biomarker step 3 list
- Assay / stat analysis / select specific + sensitive BMs

Samples

Biomarker step 4 list
- Background variability
- Thresholds (ROCs)
- Regulatory advice
- Assay / stat analysis / select specific + sensitive BMs
- Biomarker step 4 list
- Assay / stat analysis / select specific + sensitive BMs

Current status

Confirmatory phase
- Regulatory advice
- Assay / stat analysis / select specific + sensitive BMs
- Biomarker final list

Qualification

Submit to health authorities

Regulatory approval

Q2 2009
- Q1 2010
- Q4 2012
- Q4 2014

SAFE-T Renal Safety Biomarkers ProjectERA-EDTA Meeting, Paris 2012 6
Overall DIKI Project Timelines

<table>
<thead>
<tr>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ♦ SAFE-T kick-off
- Biomarker selection process & Initial clinical plans
- Biomarker assay development/ validation
- Exploratory studies protocol preparation

Regulatory meetings ♦

- Acute GN study
- Contrast study
- Cisplatin study

Regulatory meetings ♦

- Confirmatory study

Regulatory submissions ♦
1. Selection process

Candidate biomarker selection

- Literature evidence
- Previous experience in rat studies
- Pharma company databases

Renal injury populations

- Review of drugs that cause renal injury
- Prevalence/feasibility/region of kidney injury
- Shortlist based on kidney region & feasibility
<table>
<thead>
<tr>
<th>Type of biomarker</th>
<th>Biomarker name</th>
<th>Main significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional biomarkers</td>
<td>Microalbumin</td>
<td>Marker of impaired proximal tubular re-absorption</td>
</tr>
<tr>
<td></td>
<td>α-1 microglobulin</td>
<td>Marker of impaired proximal tubular re-absorption (and indirectly glomerular injury)</td>
</tr>
<tr>
<td></td>
<td>Cystatin C</td>
<td>Evaluation of glomerular filtration rate (serum)</td>
</tr>
<tr>
<td></td>
<td>Retinol Binding Protein-4 (RBP-4)</td>
<td>Marker of impaired proximal tubular re-absorption</td>
</tr>
<tr>
<td>Tissue injury</td>
<td>N-acetyl-β-D-glucosaminidase (NAG)</td>
<td>Marker of proximal tubular injury</td>
</tr>
<tr>
<td>leakage markers</td>
<td>Glutathione-S-transferase-α (GST-α)</td>
<td>Marker of proximal tubular injury</td>
</tr>
<tr>
<td></td>
<td>Glutathione-S-transferase-π (GST-π)</td>
<td>Marker of distal tubular injury</td>
</tr>
<tr>
<td></td>
<td>Liver-type fatty acid binding protein (L-FABP)</td>
<td>Marker of proximal tubular injury</td>
</tr>
<tr>
<td></td>
<td>Collagen IV</td>
<td>Marker of glomerular injury</td>
</tr>
<tr>
<td></td>
<td>Podocin</td>
<td>Marker of glomerular injury</td>
</tr>
<tr>
<td></td>
<td>Nephrin</td>
<td>Marker of glomerular injury</td>
</tr>
<tr>
<td></td>
<td>Aquaporin-2</td>
<td>Marker of collecting duct injury</td>
</tr>
<tr>
<td></td>
<td>Calbindin D28</td>
<td>Marker of injury to distal regions of nephron and collecting ducts</td>
</tr>
<tr>
<td>Tissue injury</td>
<td>Kidney injury molecule-1 (KIM-1)</td>
<td>Marker of proximal tubular injury/regeneration</td>
</tr>
<tr>
<td>response markers</td>
<td>Clusterin</td>
<td>Marker of tubular injury/regeneration (no apparent specific nephronal localization)</td>
</tr>
<tr>
<td></td>
<td>Neutrophil gelatinase associated lipocalin (NGAL)</td>
<td>Marker of tubular (mainly proximal) injury</td>
</tr>
<tr>
<td></td>
<td>Trefoil Factor 3 (TFF3)</td>
<td>Marker of proximal tubular injury</td>
</tr>
<tr>
<td></td>
<td>Osteopontin</td>
<td>Marker of injury to distal regions of nephron</td>
</tr>
<tr>
<td></td>
<td>Tissue inhibitor of metalloproteinase-1 (TIMP-1)</td>
<td>Marker of interstitial fibrosis and tubular injury</td>
</tr>
<tr>
<td></td>
<td>Connective Tissue Growth Factor (CTGF)</td>
<td>Marker of interstitial fibrosis</td>
</tr>
<tr>
<td></td>
<td>Interleukin-18 (IL-18)</td>
<td>Marker of inflammation</td>
</tr>
<tr>
<td></td>
<td>Monocyte chemoattractant protein-1 (MCP-1)</td>
<td>Marker of inflammation</td>
</tr>
</tbody>
</table>
2. Exploratory studies

• Preparation for study conduct
 – Assay development
 – Setting up of biobank facility for clinical samples
 – Academic sites selected
 – eCRF design and database set-up

• Design of clinical studies
 – Renal injury studies
 – Control population studies
2. Exploratory phase: main studies

- **Baseline studies**
 - Healthy volunteer study
 - Chronic kidney disease study
 - Non-renal disease patient samples

- **Renal injury studies**
 - Proximal tubular damage studies
 - Cisplatin in cancer patients study
 - Contrast induced nephropathy study
 - Glomerular damage studies
 - Acute glomerulonephritis patient study

 - Establish normative range and variability of each marker
 - Longitudinal case control studies
 - Cross-sectional case control study

NOTE: Nephrotoxicity studies will be in patients receiving Standard of Care treatment
2. End of exploratory phase

• Results interpretation
 – Selection of biomarkers with good sensitivity & specificity
 – Setting of appropriate thresholds for injury

• Planning for confirmatory phase studies
 – Identifying appropriate populations
 – Optimising study designs (endpoints, sampling timepoints, sample size calculation, etc.)

• Interactions with Regulatory Agencies
 – Presenting data from exploratory studies
 – Sharing plans for confirmatory studies to gain buy-in
3. Confirmatory studies

- Confirmatory phase 2013-14
 - Intent is to conduct 1-2 confirmatory studies
 - Choice of populations and studies TBD
 - proximal conv. tubular ± glomerular injury study(ies)
 - co-ordinate with PSTC to avoid duplication of effort
 - Study design(s) based on exploratory study results
3. Confirmatory phase: other studies

- **Baseline studies**
 - Additional healthy volunteer samples
 - Non-renal disease patients studies

- **Specificity studies**
 - Organ injury studies done as part of liver and vascular injury SAFE-T projects

- **Supportive studies**
 - Renal biopsy study in transplant patients
 - *Study in patients in ICU setting?*
 - *Other supportive studies?*

Studies started in exploratory phase but main body of work will be conducted in confirmatory phase.
Exploratory Phase Studies
Healthy Volunteer Study

• Single centre, non-drug study: completed
• Design:
 – 25 healthy subjects
 • 12 male, 13 female subjects:
 – 6+7 subjects 18-45 years old
 – 6+6 subjects 46-65 years old
 – 3 study periods
 • Day 0, Day 7, Day 28
 • In each period:
 – 6 blood samples collected over 24H
 – 1 spot urine plus urine collections over 24H (0-4, 4-12, 12-24h)
 • Blood analysed for serum creatinine, BUN, serum cystatin C
 • Urine samples analysed for all urinary biomarkers
• Assay work ongoing: results expected 3Q2012
Renal Injury Studies: Objectives

– To collect blood and urine samples in target population and control subjects.
– To characterise between-and within-subject variability of novel biomarkers vs. BUN/ serum creatinine.
– To compare patterns of novel biomarker changes relative to BUN/ serum creatinine to:
 • select candidate biomarkers to progress to confirmatory stage and establish cut-off values for these biomarkers.
 • characterise the time course of biomarker changes to optimise the study design of confirmatory studies.
Cisplatin Study

Populations

• **Group A**: patients with various cancers who are scheduled to start high dose cisplatin therapy.
 \[N=100\]
 [20 subjects enrolled to date]

• **Group B**: control patients with similar cancers treated with local radiotherapy or non-nephrotoxic drugs.
 \[N=20\]
 [18 subjects enrolled to date]

• **Group C**: non-treatment healthy volunteers.
 \[N=20\]
 [25 subjects enrolled]

• **Ongoing study: anticipated completion 1H2013**
Cisplatin Study Design

Patients with cancer due to receive cisplatin chemotherapy as Standard of Care

Pre-Tx Cis. Post-1st cycle of cisplatin

Urine & blood samples
(BUN/ s creatinine, serum and spot urine samples for novel markers)

Control subjects: two samples taken 4 days apart
Populations

• **Group A**: patients with symptoms of acute GN and renal biopsy-confirmed diagnosis.
 \(N=100 \) patients with confirmed acute GN
 [71 subjects enrolled to date]

• **Group B**: control patients with chronic renal impairment due to polycystic kidney disease.
 \(N=20-50 \)
 [32 subjects enrolled to date]

• **Group C**: healthy volunteers.
 \(N=20 \)
 [25 subjects enrolled]

• **Ongoing study**: anticipated completion 3Q2012
Patients presenting with symptoms suggestive of acute GN

Renal biopsy

Symptom onset

Note: no baseline sample

Urine & blood samples within 3-6 month period (BUN/ s creatinine, serum and spot urine samples for novel markers)

Control subjects will have 2 samples taken over 2-4 week period
Contrast-Induced Nephropathy Study

Populations

- **Group A**: High-risk subjects: patients with chronic renal impairment and 1 other factor predisposing to CIN and scheduled for coronary angiography.
 \[N=200 \text{ patients}\]
 [86 subjects enrolled]

- **Group B**: Low-risk subjects: patients scheduled for contrast radiology study at low risk of developing CIN.
 \[N=20 \text{ patients}\]

- **Group C**: non-treatment healthy volunteers.
 \[N=20\]
 [25 subjects enrolled]

Ongoing study: anticipated completion 4Q2012
Patients scheduled to undergo contrast injection as part of planned radiological investigation.

Contrast administration

B/L Post-contrast administration

- Urine & blood samples
 - (BUN/ s creatinine, serum and spot urine samples for novel markers)

Control subjects: 2 samples taken 4 days apart
Chronic Kidney Disease Study

- Supportive study – will continue into confirmatory phase
- Main objective
 - Collect blood and urine samples in CKD patients.
- Study population
 - $N = 200$ patients with diabetic nephropathy.
- Study design
 - Subjects are participating in a Phase 2 Pharma drug study.
 - 1^{st} sample taken at baseline before start of randomised treatment
 - 2^{nd} sample taken 2 weeks post-cessation of randomised treatment (drug will have washed out by this time)
- Samples will be analysed for novel biomarkers
- *Ongoing study: anticipated completion 4Q2012*
 [130 subjects enrolled to date]
Renal Transplant Biopsy Study

• Supportive study – will continue into confirmatory phase
• Main objective
 – correlate DIKI biomarkers and renal histopathological findings.
• Study population
 – \(N = 400 \) post-renal renal transplant patients.
 • patients scheduled to have a renal biopsy
 – Routine biopsy
 – Biopsy to determine cause of potential graft failure
• Study design
 – eligible patients have blood and urine samples taken prior to biopsy on day of planned procedure
• Endpoints
 – DIKI biomarker patterns correlated to renal biopsy findings
• **Ongoing study: anticipated completion 2014**
 [50 subjects enrolled to date]
Summary

• Consortium-based approach to safety biomarker qualification working with Regulatory Agencies and academic community
• Novel kidney biomarkers of interest chosen with new assays developed as necessary
• First healthy volunteer study completed with additional samples collected in other studies
• Three exploratory phase studies are ongoing to assess renal markers of glomerular damage and renal tubular injury
Next Steps

- Completion of exploratory studies
- Analysis of novel biomarker data and determine which are appropriate to test in confirmatory phase
 - Interactions with PSTC to align strategies
- Design of confirmatory studies with Regulatory Agency advice